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This report is a chronological documentation of the research progress made by Martijn
Kolloffel throughout the Fall Semester 2003. The research focuses on the use of cumulant
functions in queueing theory and stochastic modeling. This report is a result of a DOD
research grant proposed by Dr. Timothy. I. Matis, with the purpose to engage undergraduate
students from New Mexico State University in research in stochastic models. My progress
was monitored, evaluated, and documented through the participation in the undergraduate
research course IE 400. The investigation into the application of cumulant functions in

stochastic modeling is a continuation of research activities in the spring semester of 2003.

The usefulness of cumulant based analysis methods is researched by the formulation of a
suitable model. The first goal in this semesters research endeavor is the definition of a model
that is relevant to military applications. After the model is completely defined, we use a
cumulant derivation procedure to find an approximation to the measure of interest. We then
validate our solution by comparing it to a model simulation. After validation we strive to
expand the scale of the initial model, which can show the mathematical tractability of this
procedure for large-scale systems. We also intend to expand the model by using phase type
distributions, which allows us to model most probability distributions.

During the summer of 2003 some ideas for formulating a model suitable for cumulant-based
modeling had been generated in relation to a NASA research grant, that focused on the
reliability of components that are used in space technology. We think that the stochastic
analysis of component reliability in military applications can also be relevant and useful to
the Department of Defense. Optimizing maintenance schedules of military equipment can

prevent critical system failure and improve system availability.

The first papers in my literature research include the “Analysis of equipment availability
under varying corrective maintenance models” by Cassady and Iyoob. [1], and a paper by M.
Kijima: “Some results for repairable systems with general repair” [2]. Reading these papers
resulted in thinking about availability or reliability of systems. The initial model we
formulate is a gearbox in which the rate of failure is dependent on the state of the individual
variables in the gearbox. These variables could be the temperature, pressure, or the number

of particles in the box. We assumed that these variables of the gearbox are in a state of no,




light, moderate, or severe wear. We are not completely satisfied with our formulation and
foresee some problems when applying the cumulative procedure to this model, which

inspires me to step up the library research.

I.J. Rehmert generates my interest in shock models after reading his dissertation: “Time
dependent availability analysis for the Quasi-Renewal process”. Each shock arriving to the
system causes component failure that is a function of the total accumulated damage from
previous shocks. The components are monitored at discrete points in time, which can be
modeled with a discrete aging process.

This leads us to investigate compartmentalized wear models involving crack propagation. We
formulate a model in which cracks initiate discretely according to a Poisson distribution, and
propagate according to a continues non-linear function. The damage at time t can be
represented as an integral of an analytical function, the “crack growth expression”. I tried
viewing crack propagation as a deteriorating system, but once again encountered an
expansion of the model that was unwanted at this point in time. In order for me to be able to
construct an analytical and simulated model within the timeframe given I opted for a more
simplistic model, which would stress the advantages of using cumulative derivation. This

brought us right back at thinking about component reliability.

We formulate a model in which a single component operates in an environment of non-fatal
repairable shocks, or impacts. These shocks represent system stresses or other components
failing in the system. The shocks will cause repairable and cumulative damage to the
component. The arrival of shocks is according to a Poisson distribution. The failure of the
component is a result of both the un-repaired or current and the cumulative shocks at time t.
We can write an intensity function corresponding to component failure that is a nonlinear
function of the current and cumulative number of shocks. We can now use the cumulant
derivation method to obtain an approximation to the probability that the component is

operational at time t. An extended explanation of the model described above can be found in

the appendix.

To great relief we finally formulate a model that seems to fit the scope of my research.




The next step is the creation of numerical results based on our analytical model. Mathematica
software, and a program for the Cumulant derivation procedure, which Dr. T.I. Matis has
developed, helps us solve our partial differential equations. We define several intensity
functions and evaluate the availability of the component at time t, letting t increase discretely

from 0 to 50. The results are imported in excel to make a graphical comparison with the

simulated results possible.

We want to evaluate how well the approximation of the availability of the component is. A
simulation in ProModel simulation software is built to compare the approximation to. The
modeled system seems simple enough to simulate. In thinking about the exact timing of
every event in the simulation however, I realized that discrete event simulation software is
not always specifically designed to simulate analytical models. Debugging the simulation
with the trace-function is necessary to ensure that the simulation is operating exactly as stated
in the model formulation. To obtain a 5% confidence interval on our simulation data, we
calculate that around 40.000 replications are needed. The times of failure of the component

are written to a text-file, that is imported in excel. [Appendix]

In looking at the resulting graphs for the expected time of failure of the component we can
conclude that the cumulative derivation method is fairly accurate. We also see that it’s
accuracy increases as the truncation level increases, which seems to be a logical observation.
The mathematical tractability as the system size increases is this methods greatest strength.
This semester is coming to a rapid close, and I regret not being able to explore the advantages
this method has when we increase the size of the system. The goal to expand the model to
phase-type distributions has also not been realized. I realize that knowledge is the most
abundant resource in nature, and that there is still a lot of work to be done. I would like to
thank everybody who has made it possible for me to be exposed to the practice of doing
research and the field of stochastic modeling in particular. My interest is to continue as a
graduate student in the field of Industrial Engineering, specifically in the areas of operations
~ research and simulation modeling. Special thanks to Dr.T.I. Matis who challenged, inspired,

and supported me throughout this entire experience.




Library Research

Cassady, C.R., Iyoob, .M., “Analysis of Equipment Availability under Varying Corrective
Maintenance Models”. Work Review (2002)

In this paper, the authors present availability measures of repairable equipment.
Different corrective maintenance models are compared and the effects of varying
parameters of the models are examined. The effect of changing corrective maintenance
models on equipment availability is analyzed. The point availability is the major measure
of performance, which is illustrated in the paper by various graphics. Results are obtained
using a simulation model created in Visual Basic, and a 95% confidence interval is
obtained by multiple repetitions. The models of the impact of repair include Perfect Repair,
Minimal Repair, Kijima Types Repair, and Quasi-Renewal Repair. The simulation model is
developed to obtain functional approximations to the availability function for each of these
models. This research does not provide any analytical solution methods, but it can be used
as a tool when measuring the relative error of alternative analytical methods.

Dieulle, Laurence, “Reliability of several component sets with inspections at random times”
European Journal of Operational Research 139 (2002) 96-114
This paper considers a random process representing a system of components with

constant failure rates and subjected to inspections at times defining a renewal process. An
analytical method for calculating the reliability function, its Laplace transform and the
mean time to failure is given. These formulas are only computable if the Laplace transform
of the inter-arrival law of the renewal process is explicit. The asymptotic behavior of the
reliability and the failure rate of the system are studied. The reduced ability to model a
variety of distributions, and the intractability when modeling large-scale systems however
makes this study less applicable in reality.

Kijima, M. “Some results for repairable systems with general repair” Journal of Applied
Probability 26 (1989) 89-102
In this paper Kijima develops general repair models for a repairable system by using

the idea of the virtual age process of the system. Two models are constructed depending on
how the repair affects the virtual age process. These models are then used to obtain an
upper bound for the expected value of the survival function when a general repair is used.
The introduction of the Virtual Aging Process is interesting especially considering the large
number of references that have been made to this paper. Some knowledge of the survival
function makes modeling maintenance policies easier, and the idea of virtual aging can
greatly contribute to this endeavor.

Lam, Y., Tony, H, K., “A general model for consecutive-k-out-of-n: F repairable system with
exponential distribution and (k-1)-step Markov dependence.” European Journal of
Operational Research 129 (2001) 663-682
In this paper, a general model for a repairable system in which the lifetime of a
component depends on the number of consecutive failed components that precede the




component. The failure and repair time are both exponentially distributed in this model. A
transition density matrix is determined, and a general Markovian model is used to obtain
some measures of performance such as the availability, the rate of failures and the
reliability. The assumption is that a failed component after repair will be “as good as new”.
This publication has some general ideas that crossover to the other references presented
here, and to my own field of research. The proposed methods however lack the ability to
solve systems that show failure and repair times that are not exponentially distributed. It
exemplifies that there is a serious need for analytical methods that can provide measures of
performance for larger scale systems with non-exponentially distributed random variables.

Matis, J.H., Kiffe, T.R., “Stochastic Population Models, a compartmental perspective”

A classic book of Jacquez on compartmental analysis inspired this publication in
which stochastic compartmental analysis is reviewed and generating functions are used to
obtain many of the results. The theoretical development of the methods used is found in
Chapters three and nine, for all practical purposes I focused on chapter three. This chapter
explains the use of moments and cumulants when describing single population stochastic
models. A standard approach for solving probability functions known as the Kolmogorov
differential equations is illustrated. Cumulant functions are shown to be very useful for
finding a distributions cumulants by obtaining and solving partial differential equations for
associated generating functions. An immigration death model is used to illustrate the
theoretical development of the generating function approach. The use of cumulant
functions presented in this analysis is applied in the arena of reliability by Matis and
Feldman, as described above. I have extended these ideas to find practical application in
reliability systems with the support of Dr. T.I.Matis.

Matis, T 1., Feldman, R.M., “Using Cumulant Functions in Queueing Theory” Queueing
Systems 40, (2002) 341-353
This publication demonstrates a new procedure for obtaining measures of

performance of state-dependent queueing networks. This procedure uses cumulant
generating functions and relates these to the intensity functions in the network. The service
rate is expressed as polynomial function of the state of the system, from which a partial
differential equation of the cumulative generating function is obtained. This partial
differential equation then yields a set of ordinary differential equations, which are then
solved to obtain the first and second moments of the system with Markovian arrival and
service rates. The first and second moments of the random variables in the system provide
transient information when describing the system. As the network increases in size this
solution method remains tractable, in contrast to the method proposed by Rehmert in the
dissertation reviewed above. Cumulant functions have previously been used by Matis and
Kiffe to obtain measures of performance of ecological models, such as the spread of
honeybees or muskrats. This cumulant derivation procedure is also used in the research of
reliability systems subject to non-fatal shocks.




Pham, H. Wang, H. “Imperfect maintenance” European Journal of Operational Research 94
(1996) 425-438
The maintenance of deteriorating systems is often imperfect, as studied by using

simulation in the first reference by Cassady and Iyoob. Imperfect maintenance studies
using mathematical models for estimating availability functions and reliability have
undergone some breakthroughs that are discussed and summarized in this paper. Treatment
methods for imperfect maintenance, such as the (p, q) and (p(t), q(t)) rules, the
improvement factor method, virtual age method, shock model method, (Q 0) rule, are
examined and explained. Preventative maintenance policies, such as age-dependent,
periodic PM, failures limit policy, sequential PM policy, repair limit policy, and multi-
component systems can indicate what model needs to be selected. Although the focus of
this paper tends towards modeling maintenance policies to reduce cost, the underlying
principals can be very useful when thinking about reliability systems in a more general
sense.

Rehmert, 1. J., “Time-Dependent Availability Analysis for the Quasi-Renewal Process.” Diss.
Virginia Polytechnic Institute and University (2000)

This research is based upon the quasi-renewal process proposed by Wang and Pham
which is an alternative to the widely studied imperfect repair model, the (p, @) model,
proposed by Brown and Proschan. A quasi renewal process can realistically describe the
behavior of repairable equipment. The framework provided in this dissertation allows for
the description of the time-dependent behavior of this non-homogeneous process. Two
equivalent expressions for the point availability of a system with operation intervals and
repair intervals that deteriorate according to a quasi-renewal process are constructed. These
expressions are used to provide upper and lower bounds on the approximated point
availability. Laplace transforms are used to solve the resulting expressions. The quasi
renewal function and the point availability function are found for exponential, normal, and
gamma operating and repair intervals. It is necessary to truncate the expressions to invert to
the time domain to obtain numerical results. The usefulness of this approach seems limited
because it does not find exact expressions for all distributions, and the calculations seem to
be intractable as the size of the system increases.

Scarsini, M. Shaked, M. “On the value of an item subject to general repair or maintenance”
European Journal of Operational Research, Vol.122 (2000) 625-637
This paper introduces and studies finding a practical expression of the monetary value

of an item. The model that is constructed takes the repair and the maintenance procedures
that are applied to it during its lifetime. The number of repairs and the degree of the repair
are taken into account when doing the calculations. The degree of the repair follows the
ideas of virtual aging modeling as was presented earlier by Kijima in his virtual aging
models. The uncertainty is introduced into the model by the distributions of the inter repair
or inter maintenance periods. This paper shows how the virtual aging process can be used
to model cost under repair and maintenance procedures.




Sheu, S., Griffith, W.S., “Multivariate Age-Dependent Imperfect Repair” Naval Research
Logistics, Vol. 38 (1991) 839-850
This article considers models of systems whose components have dependent life

lengths with specific multivariate distributions. Components are repaired according to a
corrective maintenance scheme, meaning that components are repaired upon failure. Only
two types of repair are considered in this paper: perfect repair, and imperfect repair. The
study focuses on a model in which the nature of the repair is age dependent. The model
uses the (p(t), q(t)) rule which was earlier described in this reference list in the publication
by Wang. An expression for the cumulative hazard function is derived, which can be useful
when describing reliability of systems. The paper however lacks any numerical examples
that demonstrates finding the hazard function.

Wang, H., “A survey of maintenance policies of deteriorating systems” European Journal of
Operational Research 139 (2002) 469-489
This survey summarizes, classifies, and compares various existing maintenance

policies for both single-node and multi-node systems. All these models fall into categories
such as: Age replacement policy, block replacement policy, periodic preventive
maintenance policy, failure limit policy, sequential preventive maintenance policy, repair
cost limit policy, repair time limit policy, repair number counting policy, reference time
policy, mixed age policy, group maintenance policy, etc. The characteristics, advantages,
and drawbacks for each kind of policy are addressed. Maintenance and replacement
problems have been studied for the past several decades, and this invited review gives a
clear overview of the models used. Wang’s research has introduced the concept of “Virtual
Age” when modeling Quasi-renewal or imperfect repair.
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Replication

: Normal Run
: 999 of 999
Simulation Time : 0.002319444444 hr

LOCATIONS
Average
Location scheduled . Total Seconds  Average
Name Hours Capacity Entries Per Entry Contents
Environment 0.002319444444 999999 2 0.000000 6
Machine 0.002319444444 999999 3  1.226667 0.440719
Current 0.002319444444 999999 2 1.650000 0.39521
Choose 0.002319444444 999999 1 0.000000 0
write up 0.002319444444 999999 1 0.000000 0
LOCATION STATES BY PERCENTAGE (Multi ple Capacity)
%
Location Scheduled % Partially % %
Name Hours  Empty Occupied Full Down
Environment 0.002319444444 100.00 0.00 0.00 | 0.00
Machine 0.002319444444 64.91 35.09 0.00 | 0.00
Current 0.002319444444 64.91 35.09 0.00 | 0.00
Choose 0.002319444444 100.00 0.00 0.00 | 0.00
write up 0.002319444444 100.00 0.00 0.00 0.00
RESOURCES
Average

Number  Seconds
Resource . Scheduled of Times Per
Name units Hours Used Usage % Util
Repair.1l 1 0.002319444444 1 2.930000 35.09
Repair.2 1 0.002319444444 1 0.370000 4.43
Repair.3 1 0.002319444444 0 0.000000 0.00
Repair.4 1 0.002319444444 0 0.000000 0.00
Repair.5 1 0.002319444444 0 0.000000 0.00
Repair.6 1 0.002319444444 0 0.000000 0.00
Repair.7 1 0.002319444444 0 0.000000 0.00
Repair.8 1 0.002319444444 0 0.000000 0.00
Repair.9 1 0.002319444444 0 0.000000 0.00
Repair.10 1 0.002319444444 0 0.000000 0.00

o

Maximum
Contents

current
Contents

RN}
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SHistoryLength = 0;

A:=.8

Uz := .005
a:= .005
b:=.005

K[0, 0, O] [t] :=0

M[0, 0, 0] = 1;

(M[i_ ] [t] /; Plus@e {i} 24) :=0

(K[i__]1[t] /; Plusee {i} 24) := 0
3 3 3

mgfl :=ZZZM[;’, k, 1] *

1=0 k=0 =0

el ek el
Jlk!1!

3 3 3 j ko

. 61 67 63

CGF : = K[J,k, l] [t]*—
Jlktl!

1=0 k=0 3=0

MGF : = Exp [CGF]

derivl[i_ ] :=D[MGF, {61, i}] /. {e"CGF - mgfl}
deriv2[i_] :=D[MGF, {6, i}] /. {€"CGF - mgfl}
deriv3[i_ ] :=D[MGF, (63, i}] /. {e “"CGF - mgfl}

g =D[MGF, {t, 1}] /. {€ "CGF - mgfl};

3 3 3
=) j -8 3 -0 b}
h=1*[ (1') *MGF+u3*[ L9)7 |, (derivafi]) + as Lo 1,
§ . § — .
=1 I j=1 ) j=1 3!

(-83)?
j!

3
(deriv3|[1] *derivl[1l]) +b«* Z * (deriv3[1l] *derivl([2]) /. {e"CGF -» mgfl};

j=1

<< momcum.m

UptoOrder[nVar_, oxrd ] :=
Rest[Select[Distribute[Table[Range[0, ord], {nVar}], List], (Plusee# s ord) &]};
orderListl = UptoOrder|[3, 3};

relationsmod =
MomCumConvert([#, ForMomentQ » "Y", CenteredQ -» "N", MomentSymbol -» M, CumulantSymbol - K] & /@

orderListl;

relations := relationsmod /. {K[i__] - K{[i] [t]}
momcumrule = relations /. {Equal -+ Rule};

\
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eqlfi_, j_,k_] :=h/. {61 » Evaluate[i+6,], 6, + Evaluate[j +8,], 6; » Evaluate [kxo83]};
duml[i_ , j_, k ] := Coefficient{Evaluate][

eql[sign([i], Sign[j], Sign([k]]], e} 63 6%] /. momcumrule;
eq2[i_, j_,k_]:=g/. (61 -+ Evaluate[i+6:1], 6, + Evaluate[j+6,], 63 » Evaluate[k *©63]};
dum?2[i , j , k_] :=Coefficient[Evaluate][

eq2[Sign[i], Sign[j], Sign[k]]], €} 6} 6%] /. momcumrule;

bilbo = MapThread [duml, Transpose[orderListl]];
bilbo2 = MapThread [dum2, TransposeforderListl]];
Shitake = Table[bilbo2[[i]] ==bilbo[[i]], {i, 1, 19}];

Bonzai = Table|

K[Part[orderListl, i, 1], Part[orderListl, i, 2], Part[orderListl, i, 3]] '[t], (i, 1, 19}1;
neweqns = Solve[Shitake, Bonzai];
neweqgmod = neweqns /. {Rule - Equal};

Samuri = Table[K[Part[orderListl, i, 1], Part[orderListl, i, 2}, Part[orderListl, i, 3]][0] == 0,
{i, 1, 19}}:

Monkey = ReplacePart{Samuri, K[0, 0, 1][0] =1, 1];

Joy = Join[First[newegmod] , Monkey];
Pokemon =
Table[K[Part[orderListl, i, 1], Part[orderListl, i, 2], PartforderListl, i, 3]], {i, 1, 19}1;

rs = NDSolve[Joy, Pokemon, {t, 0, 50}, MaxSteps -» 10000]

K[ZI
K[2,
K[2,
K[3,

0] - InterpolatingFunction[{{0., 50.}}, <>],
1] » InterpolatingFunction[{{0., 50.}}, <>],
0] » InterpolatingFunction[{{0., 50.}}, <>],
0] » InterpolatingFunction[{{0., 50.}}, <>]}}

{{K[0, 0, 1] » InterpolatingFunction[{{0., 50.}}, <>1],
K[O, 0, 2] » InterpolatingFunction[{{0., 50.}}, <>],
K[0, 0, 3] » InterpolatingFunction[{{0., 50.}}, <>},
K[0, 1, 0] » InterpolatingFunction[{{0., 50.}}, <>],
K[0, 1, 1] » InterpolatingFunction{{{0., 50.}}, <>1],
K[0, 1, 2] -» InterpolatingFunction[{{0., 50.}}, <>],
K[0, 2, 0] » InterpolatingFunction{{{0., 50.}}, <>],
K[0, 2, 1] » InterpolatingFunction[{{0., 50.}}, <>],
K{0, 3, 0] » InterpolatingFunction[{{0., 50.}}, <>1,
K{1, 0, 0] » InterpolatingFunction[{{0., 50.}}, <>],
K{1, 0, 1] » InterpolatingFunction[{{0., 50.}}, <>],
K[1, 0, 2] » InterpolatingFunction[{{0., 50.}}, <>],
K{1, 1, 0] » InterpolatingFunction[{{0., 50.}}, <>1,
K[1, 1, 1] » InterpolatingFunction[{{0., 50.}}, <>],
K[1, 2, 0] » InterpolatingFunction[{{0., 50.}}, <>],

OI
0,
1,
0,

\2




shocks 3 2 a.nb

K[O0, 0, 1]([2] /. xs
K[0, 0, 1][4] /. s
K[O0, O, 1][6] /. xs
K[0, 0, 1][8] /. rs
K{[o0, 0, 1} [10} /. rs
K{0, 0, 1][12]} /. rs
K[0, 0, 1])([14] /. rs
K[0, 0, 1][16] /. rs
K[0, O, 1][18] /. rs
K[0, 0, 1][20] /. rs
K[0, 0, 1][22]) /. s

K[O0, O, 1][24] /. rs

K{0, O, 1][26] /. rs

Plot[Evaluate[{K[1, 0, 0] [t]} /. rs], (t, O, 50},
PlotRange » {0, 10}, AxesLabel » {"t", "E[X1(t)I")}]
Plot[Evaluate[{K[0, 1, 0] [t]} /. xs], (t, O, 50},
PlotRange - {0, 5}, AxesLabel » {"t", "E[X, (t)]"}]
Plot[Evaluate[{K[0, O, 1][t]} /. rs}, {t, O, 50},
PlotRange -+ {0, 1}, AxesLabel - {"t", "E[X;(t)]"}]
Plot[Evaluate[{K[2, 0, 0] [t]} /. rs], {t, O, 50},
PlotRange - {0, 10}, AxesLabel » {"t", "Var[X; (t)]1"}]
Plot[Evaluate[{K[0, 2, O] [t])} /. xs], {t, O, 50},
PlotRange » {0, 5}, AxesLabel » {"t", "Var[X, (t)Y1"}1]
{0.966056}

{0.858759}

{0.667377}

{0.430791}

{0.219442)

{0.0838102}

{0.0228014}

{0.00419834)

{0.000497058}

{0.0000359521)

{1.50969x1075}

{3.50847x10°%})

{4.46547x10°1%)
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Var[Xz(t)]
5

10 20 30 40

- Graphics «

(* <<CumPlot.m =*)
(*Nat=6;
Time=40;

Z=MapThread [K,IdentityMatrix[Nat]]:

z=2Z/.{K[q__]-K[q] [t]}

50

For[i=1,i<Nat+l,Plot[Evaluate[Take[Z,{i,i}]/-xs],{t,0,Time}];i++]¥*)
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Reliability Systems Subject to Non-Fatal Shocks

Timothy I. Matis and Martijn Kolloffel
Department of Industrial Engineering
New Mexico State University
P.O. Box 30001, MSC 4230
Las Cruces, NM 88003-8001
tmatis@nmsu.edu,mkollof@nmsu.edu

Abstract

The reliability modeling of numerous physical systems is critical in the prevention of system failure. In
many instances, the failure rate of system components is a function of non-fatal shocks or stresses to the
system that occur at discrete points in time. These shocks are assumed to be identical and reparable, and
they impact the failure rate of the system in a non-linear fashion via the cumulative and current number of
shocks. In this paper, we demonstrate the application of the cumulant derivation procedure to this
reliability system in a Markovian environment. This approach utilizes a truncated cumulant generating
function to generate a set of ordinary differential equations whose numerical solution approximates the
reliability function. These approximations are obtained under various truncation levels whereby this
approach is shown to be tractable for large systems.

1. Introduction

In this paper, we consider a single component operating in an environment of non-fatal reparable
shocks. These shocks may represent a wide variety of events, including the failure of other system
components, instantaneous system stresses, or the states of a compartmentalized wear process. The shocks
are assumed to be homogenous and their arrival is governed by a stationary Poisson process. They are
repaired according to an exponentially distributed infinite server repair process that begins immediately
upon shock arrival whose rate is a function of the total number of cumulative shocks. The failure of the
component is Poisson distributed with the rate being a function of both the current number of unrepaired
shocks and the total number of shocks that have ever been received by the system. In other words, each
shock has both an immediate reparable effect and a permanent weakening effect on the system. Let X,(t)
and X,(t) be integer-valued random variables taking values in [0,1,..,00] that denote the cumulative and
current number of shocks at time t respectively. Let Xs(t) be an integer-valued random variable taking
values [0,1] that represents the state of the component at time t, where X3(t)=1 denotes a functioning
component and X(t) =0 denotes a failed component. All possible unit changes that may occur in the state
of the system in a small interval of time are contained in the set B and the corresponding state-dependent
intensity (rate) functions will be denoted as £o1,6263)(X1,X2,X3) for (by,by,b3)eB . This system is graphically
depicted in Figure 1.

We assume that initially the component is operational, X3(0)=1, and no shocks have been received
X1(0)=X5(0)=0. The intensity function corresponding to component failure, fo.1y(X;,X5,Xs), is specified
as a nonlinear function of the cumulative and current number of shocks, X; (t) and X,(t), and represents the

- damage process previously described. Our primary interest is in approximating the reliability function of
the component, i.e. the expected value of Xs(t), forall t > 0 using truncated cumulant generating functions.
These approximations are compared to simulated values for several systems under various intensity
function specifications and truncation levels.
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(1)

@
f(1,1,0)()(1 7x27x3) f(0,0, .1)(x1 1x21x3)

@ +—
f0.-1.0/(%1:X0,X5)

Figure 1: Graphical Representation of Reliability System

2. Cumulant Derivation Procedures

Let X(1)=(X: (1), X(t),, X5(t),) be a random vector of the system state at time t. It follows that X(t)
forms a Markov process with an absorbing state that denotes component failure. While such a process may
be solved exactly using convention means, i.e. Kolomogorov Equations, such an approach is intractable for
large systems or those with an infinite state space. Asan alternative, the cumulants of the state-distribution
of X(t) may be approximated using a truncated generating functions. These cumulant measures correspond
directly to the common measure of mean, variance, covariance, skewness, etc. of the state distribution.
Previous investigations into the nature of cumulant functions by Kendall[1][2] and Smith[3] reveal several
interesting properties. In particular, the cumulants of a multivariate normal distribution greater than the
second order are null, and the marginal cumulants of a Poisson distribution are equal. This and other
properties of cumulants are exploited by this approximation procedure. This section contains only a brief
overview of the cumulant derivation procedure based on the full development found in Matis and Feldman
[4]1(5], Matis [6], and Matis and Kiffe [7].

Let M(6,,6,,6,,t) be the multivariate moment generation function of X(t) defined in the usual

manner, and let K(6,,6,,6,,¢) be the multivariate cumulant generating function defined as

a a
I.g°n
kal,...,an (t)gl 6n

K(01962a63at)= Z

ala |
),y €N 1 n

where N* denoted the set of non-negative integers. The joint cumulants kal et (%) of the system are

defined as functions of the individual moments through the relationship between the generating functions,
ie.

K(6).6,.65,0 =Inlp(6,,0,,6,,1)). )
The moment generating function of X(t) related to the polynomial intensity functions of the

system through a partial differential equation. This relationship was investigated by Bartlett[8] and
Bailey[9] and thereby dubbed the “Random Variable Technique”. While the specification of the partial
differential equation of the moment generating is almost immediate, finding a solution is usually
computationally intractable. The cumulant derivation procedure involves substituting a truncated cumulant
generating function for the moment generating function into the partial differential equation according to
Eq. (1). A set of approximating ordinary differential equations is obtained upon expanding the partial
derivatives, substituting Taylor series expansions for the exponential terms, and equating the coefficients of
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unique combinations of the 6,'s . The accuracy of these approximations is dependent upon the
specification and order of the polynomial intensity functions and the level of cumulant truncation. Previous
investigations, Matis[6], have shown that truncation at the 3" order is éenerally sufficient for “good”
approximations of the first order cumulants (mean), while that at the 4™ order is sufficient for the marginal
second order cumulants (variance). Further developments of the cumulant derivation procedure will be
described in a reliability context.

3. Cumulant-Based Analysis of the Non-Fatal Shock Process

In this section, we demonstrate the application of cumulant-based procedures to the non-fatal
shock process described in the introduction of this paper, see Figure 1. This will be shown for one instance
of the problem under a unique set of intensity functions. Let the intensity function of the system be defined
as

£1.,1,000, X2, X3) = A )
fi0.1,0/X1,%2.X3) = 11X "X (1) ]
£0.0.1(%1,X2,X3) = ps(Xa(t)+X4 ()X7() Xa(t))

where 3=.10, p,=.05, and p;=.025. In other words, the rate of repair is dependent upon the cumulative
number of shocks and the failure rate of the component is dependent on both the current and cumulative
number of shocks, both in an increasing manner. A partial differential equation of the moment generating
function of X(t) is found using the “Random Variable Technique” as

o 26, 2 06700,
@

(=0, -1)| BM(6),6,,6,,1) N 64M(61,02,63,t)
e s
o6, 2
3 691662 06, ‘
An m" order truncated cumulant generating function X m (6’l , 62 , 03 »£) and a Taylor series expansion of
the exponential terms is substituted into Eq.(2) yielding the expression

aka@nnn (o (940} ph@ans (e £6,))ser@nnn
G TAX oo, 12 2= | 2670,
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(€))
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Expanding the partial derivatives, converting moments to cumulants (Smith[3]), and equating the
coefficients of like polynomial terms on the right and left hand side of Eq. (3) yields a closed set of

3
[lH G+ m)J —1 ordinary differential equations. The size of the generated sets of ordinary differential

3!

i=]

i=]

equation does not permit their demonstration in this paper, yet the number of such equation is 9 under a
truncation level of m=2, 19 under m=3, and 34 under m=4. Approximations to the low order cumulants are
found upon numerically solving these sets of ordinary differential equations.

4. Numerical Results
The sets of ordinary differential equations generated from Eq. (3) were numerically solved using the

mathematical software Mathematica® under the truncation levels m=2, 3, 4. These were then compared to
sirhulated point estimates based on 10,000 replications using the software ProModel®. The initial

&




conditions for the process have all cumulants set equal to zero except for ko, (0), which corresponds
directly to the reliability of the component at time 0, is set to one. As previously noted, truncating the
cumulants at m=2 implies that the state-distribution is normally distributed. Increasing the level of
truncation to m=3 brings in skewness and m=4 brings in kurtosis, in addition to the effects of the higher-
order cross cumulants. The cumulant approximations for the reliability of the component, ..
R()=E[X5(t)], is given in Figure 2.

E[Xs(8)]
‘k“‘\_
0.8
—m=2
0.6 - —— m=3
~m=4
»»»»»»»» sim
0.4
0.2 4
0 10 20 30 40 50

Figure 2: Graph of R(t) = E[X;(t)] for Varying Truncation Levels

The approximation of R(t)=E[X;(t)] is relatively tight between all values of m and close to the simulated
value. This result is promising as the reliability function for systems subject to similar non-fatal shock
processes may be well approximated using small values of m. As such, this result provides evidence that
approach may be extended to similar large-scale networks in a computationally efficient manner. Though
not of primary interest in this paper, the differences in approximations of the variance of the current
number of shocks, Var[X,(t)], between truncation levels is noteworthy and is given in Figure 3.

Var[X;(t)]
0.7 1

0.1
I
0 T T T T T T T T T T T T T T T T T T T T T T T T T t

0 10 20 30 40 50

Figure 3: Graph of Var[X,(1)] for Varying Truncation Levels
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The specified model was then evaluated under the parameter specification A=.10, p,=.05, and y;
=.005 yielding the graph in Figure 4. Comparing the similarity of the cumulant approximations for various
truncation levels in both Figures 2 and 4 provides evidence that the precision of the reliability function
approximations do not significantly vary with the rate of system failure. Comparing these approximations
to simulations, however, provides evidence that the accuracy of the approximations increases as the rate of
system failure decreases.

E[Xa(t)]
1 9=,
\\"‘N-u
‘~;:\‘1.~~‘
0.8 )
.......... m=2
0.6 "m=3
————— m=4
-------- sim
0.4 1
0.2
0+ """+ {
0 10 20 30 40 50

Figure 4: Graph of R(t) = E[X5(t)] for Varying Truncation Levels
The polynomial intensity function of the model were then redefined as

£0,1,00(X1,X2,X3) = & ,
£0.1,0X1,X2,X3) = X1 ) Xaft)
£10,0.1(X1,X2,X3) = s (XsO+X (0K’ ®) Xa(D)

increasing the dependency of the failure and repair rates on the state of the network. The graph of the
reliability function is given in Figure 5. This deviation of the cumulant approximation under m=2 provides
evidence that 2™ order truncation is not sufficient for approximating the cumulants of systems that are
strongly state-dependent. This observed result is consistent with the previously stated properties of
cumulants, i.e. truncation at m=2 assumes a multivariate normal state distribution. This normal assumption
clearly does not hold for systems with strong state-dependency in which skewness is clearly present.

20




E[Xs(t)]
19—

0.8

0.6 1

0.4

0.2 1

0+t
0 10 20 30 40 50

Figure 5: Graph of R(t) = E[X;(t)] for Varying Truncation Levels

S. Conclusions

In this paper, we have shown the application of cumulant derivation procedures to a reliability
system subject to non-fatal shocks, i.e. a state-dependent reliability system. The effect of various
truncation levels on the accuracy of the reliability function approximation was demonstrated for various
parameters and intensity functions. The similarities between these approximations provide insight into the
expandability of the approach to large, complex systems. A copy of the Mathematica® computational
routines used to set up and solve the approximating set of ordinary differential equations may be obtained
from the authors upon request.
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